Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection.

نویسندگان

  • Jake T Neumann
  • John W Thompson
  • Ami P Raval
  • Charles H Cohan
  • Kevin B Koronowski
  • Miguel A Perez-Pinzon
چکیده

Ischemic preconditioning (IPC) via protein kinase C epsilon (PKCɛ) activation induces neuroprotection against lethal ischemia. Brain-derived neurotrophic factor (BDNF) is a pro-survival signaling molecule that modulates synaptic plasticity and neurogenesis. Interestingly, BDNF mRNA expression increases after IPC. In this study, we investigated whether IPC or pharmacological preconditioning (PKCɛ activation) promoted BDNF-induced neuroprotection, if neuroprotection by IPC or PKCɛ activation altered neuronal excitability, and whether these changes were BDNF-mediated. We used both in vitro (hippocampal organotypic cultures and cortical neuronal-glial cocultures) and in vivo (acute hippocampal slices 48 hours after preconditioning) models of IPC or PKCɛ activation. BDNF protein expression increased 24 to 48 hours after preconditioning, where inhibition of the BDNF Trk receptors abolished neuroprotection against oxygen and glucose deprivation (OGD) in vitro. In addition, there was a significant decrease in neuronal firing frequency and increase in threshold potential 48 hours after preconditioning in vivo, where this threshold modulation was dependent on BDNF activation of Trk receptors in excitatory cortical neurons. In addition, 48 hours after PKCɛ activation in vivo, the onset of anoxic depolarization during OGD was significantly delayed in hippocampal slices. Overall, these results suggest that after IPC or PKCɛ activation, there are BDNF-dependent electrophysiologic modifications that lead to neuroprotection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice.

Glutamate receptors and calcium have been implicated as triggering factors in the induction of tolerance by ischemic preconditioning (IPC) in the brain. However, little is known about the signal transduction pathway that ensues after the IPC induction pathway. The main goals of the present study were to determine whether NMDA induces preconditioning via a calcium pathway and promotes translocat...

متن کامل

Resveratrol Preconditioning Induces a Novel Extended Window of Ischemic Tolerance in the Mouse Brain.

BACKGROUND AND PURPOSE Prophylactic treatments that afford neuroprotection against stroke may emerge from the field of preconditioning. Resveratrol mimics ischemic preconditioning, reducing ischemic brain injury when administered 2 days before global ischemia in rats. This protection is linked to silent information regulator 2 homologue 1 (Sirt1) and enhanced mitochondrial function possibly thr...

متن کامل

Time course of normobaric hyperoxia preconditioning on NCX2, 3 expression

Introduction: The purpose of this study was to determine Na-Ca exchanger 2, 3 (NCX2, 3) protein level changes during 2, 5, 10, 15 days after induction of normobaric hyperoxia (HO) preconditioning. Materials and Methods: Rats were divided in two experimental groups. The first group was exposed to 95% inspired HO for 4 h/day for 6 consecutive days (HO). The second group acted as control, and was...

متن کامل

Time course of neuroprotection induced by in vivo normobaric hyperoxia preconditioning and angiogenesis factors

Objective(s):Every year, a large number of people lose their lives due to stroke. Stroke is the second leading cause of death worldwide. Surprisingly, recent studies have shown that preconditioning with hyperoxia (HO) increases tissue tolerance to ischemia, ultimately reducing damages caused by stroke. Addressed in this study are beneficial contributions from HO preconditioning into reduced har...

متن کامل

Epsilon PKC Increases Brain Mitochondrial SIRT1 Protein Levels via Heat Shock Protein 90 following Ischemic Preconditioning in Rats

Ischemic preconditioning is a neuroprotective mechanism whereby a sublethal ischemic exposure is protective against a subsequent lethal ischemic attack. We previously demonstrated that SIRT1, a nuclear localized stress-activated deacetylase, is vital for ischemic preconditioning neuroprotection. However, a recent study demonstrated that SIRT1 can also localize to the mitochondria. Mitochondrial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 35 1  شماره 

صفحات  -

تاریخ انتشار 2015